

Forming Teams for Teaching Programming based on Static Code

Analysis

Davis Arosemena-Trejos1, Sergio Crespo2 and Clifton Clunie3

 1 Universidad Tecnológica de Panamá

Panama City, Panama

davis.arosemena@utp.ac.pa

2 Universidade do Vale do Rio Dos Sinos

Sao Leopoldo, Brasil

crespo.sergio@gmail.com

3 Universidad Tecnológica de Panamá

Panama City, Panama

clifton.clunie@utp.ac.pa

Abstract
The use of team for teaching programming can be effective in the

classroom because it helps students to generate and acquire new

knowledge in less time, but these groups to be formed without

taking into account some respects, may cause an adverse effect

on the teaching-learning process. This paper proposes a tool for

the formation of team based on the semantics of source code

(SOFORG). This semantics is based on metrics extracted from

the preferences, styles and good programming practices. All this

is achieved through a static analysis of code that each student

develops. In this way, you will have a record of students with the

information extracted; it evaluates the best formation of teams in

a given course. The team’s formations are based on programming

styles, skills, pair programming or with leader.

Keywords: Work team, Teaching programming, Programming

styles, Static Code analyzer, Ontology.

1. Introduction

The programming has been one of the areas of knowledge

that demands more concentration, analysis, organized

labor, patience and dedication, this is difficult for new

students due to immaturity and other factors that cause

specific problems in programming as is the case of the

good implementation of languages, the correct use of the

instructions, problems in the development of logic,

creating optimal algorithms, among others [1]. On the

other hand, there are other difficulties related to the

social environment, heterogeneity and personal problems

that affect the process of programming and therefore

learning it [2].

To overcome these problems, efforts have been used for

the development of methodologies and tools that support

the teaching-learning process of programming, such as the

research of [3] that present a framework for static analysis

of programs for students, this returns, in case of errors,

correction suggestions. [4] [5] present also tools to support

the teacher in this process. There are techniques posed to

improve the student's ability through good programming

practices that allow them to develop skills in

understanding programs [6]. On the other hand, [7] present

a teaching method that Cognitive Apprenticeship Learning

program helps students. The use of teams in classrooms is

one of the most widely used methods that can actually help

in this process [8] [9] [10]. However, these groups to be

formed without taking into account certain considerations,

may cause an adverse effect on the teaching-learning

process of programming [1] [11].

This paper aims to present a tool for the formation of work

teams based on static analysis of source code (SOFORG),

which extracts information on programming styles,

preferences and best practices through static analysis of

the students develop programs, and likewise, if it existed,

SOFORG provides an assessment of the problem

suggested based on an ontology model assumption. The

result of each analysis will be stored as static metrics for

each student, in this way, there will be a complete record

of the exercises applied in group or individual. For the

formation of groups, the tool evaluates the current status of

students in a particular course in order to suggest the best

option of forming groups and these groups may be based

on skills, programming styles, pair programming, groups

with leader [12].

In addition to the above, SOFORG is useful in identifying

gaps based on best practices of students [13] [14] (e.g.

initialization of variables, variables that are not declared

private or protected, others), which in most cases becomes

a tedious task for the teacher, will also help keep a statistic

on the percentage of students' progress that will assess the

effectiveness of the techniques, methodologies, models

and types of exercises used by the teacher groups, and

other research within the teaching-learning programming

process.

2. Static code analysis

Static code analysis is a technique used in Program

Comprehension to program evaluation and analysis

without being executed. This technique extracts relevant

information about the program structure, programming

styles, and other semantic errors [15]. Static code analysis

has many applications in software engineering, but this is

used as a technique within a few tools for teaching and

learning of programming, such is the case of a framework

for static analysis of programs for students [3],another tool

assesses quality of programs through certain software

engineering metrics [16], also, there are others who

identify the algorithms used by students and assesses the

ability of these [17], and likewise, [18] and [19] propose

methods by static analysis for detecting errors and

shortcomings. On the other hand, the static code analysis

has a number of approaches that are presented by [17]

these are: based on knowledge, similarity assessment,

reverse engineering.

3. Team for teaching programming

Developing collaborative learning environments (work

teams) through the achievement of mixed ability, it can be

used as a teaching method for teaching programming [20].

In this way, students can be formed in teams to solve a

programming assignment, where members discuss a

possible solution and then they develop either by dividing

sub-job work for each member or working together in a

single module or task, if they can use pair programming on

collaborative environment [8] or working on one computer

[21]. Thus, this creates indirectly the effect that each

student becomes the guardian of another [9], because they

can consult different concerns with classmates or look

together the work done by the rest. The use of teams can

be more effective by instructional techniques, cognitive

strategies or methodologies complete, however the success

of the groups for teaching programming is not a trivial task,

therefore sometimes it is not used very well, because there

are internal and external factors that affect the

performance and its success [2], [11].

4. Related research

[3] presents a framework for static analysis, where it is

used to the student's practice, it allow to write better

programs, because it gives assistance to the teacher in

class and allows him to understand the real situation of

students. This framework uses software engineering

metrics and comparisons of models to assess the students

and a program in case you find errors, notify the student

and suggests a possible solution. On the other hand, [1]

propose the formation of student's group for a

collaborative learning programming, the formation of

these groups is based on programming styles. In this

analysis, it uses a tool called a Program Quality

Assessment (PQA-C) that determines a percentage or

value based on a set of metrics, where the highest scoring

students form teams and the same way, the intermediate

and lowest students form others groups.

5. Description of SOFORG

The SOFORG tool is aimed to assist the teacher in

teaching programming. Its purpose is extract relevant

information from students’ source code through a static

analysis on Java language and provides a record that

allows it to create teams based on characteristics.

5.1 Extracted information

The result of extracted information is divided into 4

groups: programming styles, preferences structures, best

practices and possible student outcome assessment, which

will be described below.

5.1.1 Programing style

Programming styles are independent on the final

functionality of the program, which these represent the

appearance and format that each programmer gives to

source code. There are many programming styles because

they depend on the personality and habits programmer [2].

Some important programming styles with their respective

metrics are present below based on [22], [23]:

Length of identifiers (LI): this takes into account names

of variables, methods, classes, interfaces and packages, in

which extracts an overall average of the length thereof.

The following equation is proposed to be measured:

 (1)

where: NC - total number of characters of all identifiers,

NTN - total number of identifiers found in the code PL - is

the average length of identifiers.

Indentation (I): it is the space that exists at the start of

each line of code; this is used to improve eyesight and

reading it. The following equation is proposed for

measurement:

 (2)

where: L - is the total number of lines of code, I - is the

number of spaces of indentation for each line of code l,

NEi - is the number of space indentation of the source

code, Nl . 4 - is the nesting level of each line of code (0,1

..) multiplied by 4, PI - is the ratio between NEi and Nl . 4.

The latter sum is that is referenced to a 4-space

indentation, for every level of nesting, e.g. line: 2 on level:

0 - it has 0 space indentation, line: 14 on level: 2 - it has 8

spaces indentation. This indentation style is presented in

some Java IDEs like as Netbeans.

Use curly bracket (CB): this indicates that a curly bracket

(usually to state structures, classes, methods) may be in the

same line as the structure is declared or in the next line.

Use blank lines (BL): it represents the blank space

between lines of code; this gives a better view and formats

it. Many students vary the amount of blank lines,

especially for separating structures or lines of code in a

section. The metric is proposed for this style below:

 (3)

where: B -is the possible repetitions of blank lines in the

code, LBb - total number of blank lines, Ll - is the total

number of lines that have the code, PB - is the ratio

between the total number of blank lines and the total of

lines that have the code.

Statement of code per line (SCL): it describes the

amount of code lines that is completed by semicolon (``;''),

also this can represent either a part or all of a structure that

can be in one line. The following metric for the measure is

proposed below:

 (4)

where: C - is the possible number of reference code lines,

LRc - is the c times existing reference lines in the code, PC

- is the ratio between the total code lines and reference

code lines.

There can be three types of reference code lines and they

are based on the default format of some Java IDEs like

Netbeans: 1. sentences ending by semicolon, 2.

declarations of structures, methods or classes followed by

the curly bracket, 3. closing curly bracket. Example: if

(var < 2) {return var; } ... has 3 reference code lines.

Documentation program (D): basic programming

students do not have a habit of documenting their code,

because they find it boring or unnecessary use. The next

formula is proposed for measuring of this programming

style:

 (5)

where: NCD - is the total number of characters within the

code documentation, S - number of code lines without

computing the documentation lines, LSs - is the total

number of lines undocumented code represented by the s

possible times.

Initialization variables (IV): it may be optional, but in

some languages such as C, initialize all variables when

their declaration is of vital importance in the elimination of

garbage rows of memory, but this problem does not exist

in the new programming language. This programming

style is measure calculating the total percentage of

initialized variables.

5.1.2 Preferences of structure

Programming preferences are classified as programming

style, but to this work, has been made a separate

classification to a better appreciation. There are multiple

ways to solve a problem within the program, all can be

equally efficient. These multiple ways can be: decision and

repetition structures, recursive or inductive methods and

specific functions of language. The use of one of them is

the programmer's preference.

This tool only evaluates preferences in decision and

repetition structures, these are 4 types: Ifelse_elseif (IE),

Ifelse_elseif_switchcase (IES), For_while_dowhile (FWD),

While_dowhile (WD).

5.1.3 Best practice

Similarly, SOFORG evaluates the source code to suggest

best practices. In programming, best practices represents

the set of patterns or styles of programming that the

student must apply to improve performance and

maintainability of the programs, and avoid programming

errors.

This information is useful to identify potential

deficiencies, especially in OOP, from the evaluation of

those best practices that the student has not applied. The

analysis of best practices is knowledge-based approach, as

is the preference structures, explained in the section 2. The

following are best practices that SOFORG can evaluate:

Attributes that have not been initialized in the

constructor: It is best practice of OOP, where the

attributes have to be initialized in the constructor of their

respective class, except static or final attributes and that

belong to abstract classes or interfaces.

Public static type attributes uninitialized in his

statement: All attributes of public static type must be

initialized in its declaration, no matter they are initialized

in a constructor, because this could produce programming

error when used by another class and has not been

initialized.

Final type attributes must be declared static: When an

attribute is declared final, but not static, will cause each

instance of the class to which the attribute belongs, keep a

record in memory of the same value, but if the attribute is

declared static, there will be a single record for all

instances. Thus, this will help in better utilization of

memory.

Attributes that are not declared private or protected:
All attributes except those declared final or static and the

attributes of the interfaces must be declared private or

protected.

Class without constructor: Each created class should

have its own constructor for purposes of maintainability,

except the classes with main method, abstract classes and

interfaces.

Methods can be declared static: The use of static

methods improve the performance of compilers and

consume less memory, since no copies are created for each

instance method.

Nested classes can be declared static: he use of static

classes are similar to the use of the methods of this type,

thus this represents a best practice.

5.1.4 Assessment code

SOFORG used similarity assessment approach (described

in section 2) to the analysis of assessment code, because

the students' program is compared with a stored model for

it. These models contain the possible solutions of an

exercise, this is an ontological structure written in OWL

[24]. The exercises will be graded based on 100 %, so that

each part of the structure will have a weight of the

problem, for example, if an model implements a cycle, it

will has a weight of 13 % of the total 100, the operations

within this cycle will have another percentage and so on. If

the logical statement of cycle is erroneous, also the nested

operations and so this is a total loss of all points in the

cycle and operations, although they will be well. On the

other hand, the position and sequence of structures and

operations within the program will have others weight.

Not all problems that are presented to students could have

stored models in OWL. This depends on the complexity,

use of special features of Java and GUI. Therefore, in case

there is no model, the teacher evaluates and enters the

assessment where it will be stored with full registration of

analysis.

5.2 Static code analysis for students

SOFORG has some elements that form the tools, these

elements are showed in the figure 1. The Static analyzer -

S element is responsible for extracting the programming

Figure 1: Outline of SOFORG elements.

style metrics, it scans the source code in form string. On

the other hand, Parser – CFG analyzes with Context-free

grammar using a parser and interpreter called JavaCC

[25], this element provides the result of good practices and

preferences of structures, also if there is a solution model

of exercise, it grades the student's program and provides an

assessment. For this assessment, Parser - CFG extracts the

program components of student model and sends them to

OWL analyzer. The OWL analyzer implements Jena [26],

which is a framework for creating web semantic

application where this receives components program

information from Parser-GLC and generates OWL

instances of these, then it loads the solution models of

exercise by reference that is specified in the source code.

The solution models of exercise are ontological structures

that represent the possible solutions of these exercises, this

ontological structure is written in OWL and they are

represented by an OWL file. The benefits of OWL are to

organize solutions through classes and subclasses, for

example: Super class: Solution1-2 has subclasses:

Solution1 and Solution2. Although all applications of this

type are NP order, the organizing of solution in this way

improves the search time. Therefore it locates the right

solution into ontological structure then compares the

properties of the found components (OWL generated

instances) with the components of the respective solution

for grading of this, all through an ontological reasoner in

Jena.

The following lists the components that can be identified

with their respective properties in OWL:

Inputs: logical order (before, after), the variable that

receives the input, the hierarchy level and its location (if it

is nested within a structure of if-this, while and other, but

in the case of being if-else, if it is in the IF or ELSE).

Prints: logical order, variables that are printed,

hierarchical level and location.

Operations: logical order, used variables, used operators,

the variable that was assigned the result, hierarchical level

and location.

Numeric and Boolean values: it does not contains

properties, it use his name for this.

Logical statements: used variables, logical operators, if

they relate to another statement through AND or OR.

Variables: type of variable, initialization, which

components it was used.

If-else structure: logical order, used local statements,

hierarchical level and location.

While structure: logical order, used local statements,

hierarchical level and location.

Do-while structure: logical order, sentence used,

hierarchical level and location.

Switch-case structure: logical order, reference variable,

values of the case, hierarchical level and location.

Array: logical order, type, length, hierarchical level and

location.

Methods: variable types that accept, whether or not return

a result, result type that return, location.

Class: class type (abstract, public, private), whether

inherited or not, whether it implemented or not a interface.

Attributes: privacy type, variable type, initialization,

components where it was used.

Constructors: variable types that accept, source class, type

of privacy.

Instances: location, source class, constructor to access.

5.3 Generation of work teams

This tool has a set of options that the teacher may choose

to form groups and their possible characteristics, based on

[21], [1], [27], some types of team with application

benefits are presented as follows:

Pair programming teams: this type of team uses the

same computer, includes two students sitting in front of it,

where one takes the role of Driver and the other the

Navigator role; both can discuss a possible solution, but

the Driver is the one responsible for writing the code in the

computer and the Navigator reviews and monitors the

code already written for finding errors. The optimal use

will depend of these students possess the same

programming styles and skills.

Teams based on leading student: this is comprised of

students where one or more have the role of leader, it may

be advantageous to use because the leading students

provide better support to their classmates. Students receive

from their leader a clarification of their doubts and more

focused and personalized explanations than the teacher.

They are useful in those classrooms where most students

have little or lower capacities compared to the rest of the

group.

Teams based on programming styles: it is comprised of

students who have the same programming style. This type

of group will enable better integration and adaptation in

the tasks assigned to students sharing the same preferences

and styles of programming.

Teams based on abilities: these teams are useful for

grouping students with similar or different abilities.

Grouping students with similar abilities may help to

increase the performance and production in the

programming work, but on the other hand, teams that are

grouped by different abilities may help to students with

lower ability in the learning process.

Random teams: these teams are composed of students

who have been randomly generated, regardless of any

criteria. Its main advantage is that students are fully

distributed in such manner that helps them to develop the

skills needed to work in groups.

Professor not always know what is the best type of group

to form, this is because it depend on the current status of

students in a course, and it can be ability levels and styles

of programming [12]. The ability of students is registered

in each static analysis; this is based on the evaluation

provided and a weight that is given to the suggestions of

best practice identified in solution students. The metric of

ability will measure with values between 0 and 100. Thus,

SOFORG provides the option to choose the best team to

form; this is made by evaluating the current status of the

course. An algorithm for the suggestion of the best option

forming group is presented on the figure 2, this represents

the structure of decision that is based to suggest that team

formation, where: porcenEstilo - is the percentage of

similarity of programming styles in students of the course,

porcenCapaDife - is the percentage of students with

abilities larger than average capacity of the course,

porcenCapaIgual - percentage of students with similar

abilities, numEstuCapaTutor - is the number of students

with abilities greater than average range,

numEstuEstiTutor - is the number of students with abilities

greater than 91. The values, ranges and percentages used

in the algorithm can be edited in SOFORG, this allows the

tool to raise awareness in verifying the similarity of

programming styles, abilities and detecting leading

students, and likewise, there are other variables that can be

edited such as: the size of team to form that has by default

5 members.

This algorithm evaluates the pair teams formation and then

the formation teams of five with either tutor or not,

because formations with pair teams and based on

programming style get more benefit for students in the

teaching-learning process [1], [5].

5.4 Features of SOFORG

SOFORG is a desktop tool with database on a central

server; each teacher will start its own session. When

logged on, the system queries could be done through

existing forms or start a new static analysis specifying the

java files. Once these files is specified, it analyzes showing

the result, this result can be changed as shown in Figure 3,

this figure shows the result of analysis that is organized in

their respective categories (detailed in sections 5.1),

Figure 2: Algorithm for the suggestion of the best option forming

group.

Figure 3: View of static analysis result.

together with the student's name and code of exercise.

Also the programming styles panel presents the results

based on the metric set, the preferences are separated in

each panel and explained, and use radio buttons for each

option, in case there is no particular preference, SOFORG

marks the radio button “Without ref.”, on the other hand,

the panel of best practice is a text box that shows the best

practice that students have not applied specifying,

depending on the case, the referenced object, class to

which it belongs, line and column in the code, and finally,

the assessment panel which has a text field and have the

following format obtainedPoints/totalPoints, if the

assessment does not appear in the text field, the teacher

should include his assessment for student exercise. When

many analyses are stored, the teacher can generate teams

using these tools, the figure 4 shows 4 panels for the

setting of forming teams. The course code should be

included as shown in the 1 panel, then the teacher can

choose several options for forming teams such as: type of

team, number members, if the teams is based on abilities,

programming style or randomly, when the options has

been set, the tool shows the selected options as shown in

the 4 panel. The teams are generated and it presents the

name and ID of students within the team to which they

belong.

5.5 Other contributions of SOFORG

SOFORG can identify applied exercises and hold an

annual cycle of them, also permits viewing the progress of

individual students by grade, level, from the student

evaluation, and likewise, this tool helps in identifying

group and individual deficiencies associated with the

detection of best practice. Also it allows evaluating the

effectiveness of teaching methods used by teachers, from

students' progress. Also, know the problems more difficult

for students, in this way; the teachers can evaluate the use

of the best problems to start a class. All this will help to

hold a complete history that allows for other scientific

studies.

6. Case study

A case study to evaluate the SOFORG tool was carried out

in the second semester of 2011 with one group of fourteen

students and a course of basic Java language at

Technological University of Panama. Two exercise of

programming was applied to students individually, and

then source codes of the students were analyzed with

SOFORG for forming the teams finally. The setting for

forming teams is three students per teams and based on

programming styles. The list of this students can be seen

in the table 1 where this has the metrics of programming

styles and preferences as result of static analysis of both

exercises.

The figure 5 shows the result of formed teams by

SOFORG and also the setting final in red letters.

4. Conclusions

A tool to the formation of work teams based on static

analysis of source code (SOFORG) was proposed, together

with the description of its most important elements and

characteristics, two types of static analysis was used, these

implemented context-free grammar and pattern recognition.

Figure 4: View of the setting for the formation of teams.

Also, there are ontological models for the evaluation of the

problems, but not all problems will have an ontological

model, it depends on the complexity and the several ways

of algorithms that can be employed.

This tool can be implemented in the universities to submit

basic programming courses, adding other modules to

complement the labor of teachers, on the other hand,

SOFORG is flexible to work with more parameters

(programming styles, preferences) to allow capture of

more precisely the characteristics of students, and likewise,

you can add other rules in the detection of best practices

and program models to the repository.

The better your paper looks, the better the Journal looks.

Thanks for your cooperation and contribution.

Acknowledgments

Work funded by Secretaria Nacional de Ciencias y

Tecnología (SENACYT) of Panama through the Proposal

with No. APY-GC10-026B.

Figure 5: Generated teams view.

Table 1: List of students with their metrics from static analysis of SOFORG

References
[1] E. S. J. de Faria, J. M. Adán-Coello, and K. Yamanaka.

“Forming groups for collaborative learning in introductory

computer programming courses based on students

programming styles: An empirical study”. In 36th

ASEE/IEEE Frontiers in Education Conference, pages 6–11.

IEEE Computer Society, 2006.

[2] A. Cox and M. Fisher. “Programming style: Influences,

factors, and elements”. In 2009 Second International

Conferences on Advances in Computer-Human Interactions,

pages 82–89. IEEE Computer Society, 2009.

[3] N. Truong, P. Roe, and P. Bancroft. Static analysis of

students java programs. In fixth Australian computing

Education Conference (ACE2004), pages 317–325. ACM,

2009.

[4] Y. Morimoto, K. Kurasawa, and S. Yokoyama. A support

system for teaching computer programming based on the

analysis of compilation errors. In the Sixth International

Conference on Advanced Learning Technologies

(ICALT’06). IEEE Computer Society, 2006.

[5] D. W. Juedes. Web-based grading: Further experiences and

student attitudes. In 35th ASEE/IEEE Frontiers in Education

Conference, pages 18–23. IEEE Computer Society, 2005.

[6] S. Gray, G. Lewandowski, S. Edwards, and A. Shende.

Improving student programming skills by developing

program comprehension abilities. JCSC 20, 3, pages 235–237,

2005.

[7] T. R. Black. Helping novice programming students succeed.

JCSC 22, 2, pages 106–114, 2006.

[8] C. A. Bagley and c. Candace Chou. Collaboration and the

importance for novices in learning java computer

programming. In ITiCSE’07, pages 211–215. ACM, 2007.

[9] Y. Namatame. Evaluation of the group study using peer

review in the lesson of programming. In C5 ’04: Proceedings

of the Second International Conference on Creating,

Connecting and Collaborating through Computing, page 190,

Washington, DC, USA, 2004. IEEE Computer Society.

[10] T. Castro, H. Fuks, and A. Castro. Programming in groups: a

progression learning scheme from the individual to the group.

In 38th ASEE/IEEE Frontiers in Education Conference,

pages 15–20. IEEE Computer Society, 2008.

[11] T. J. Scott and J. H. Cross, II. Team selection methods for

student programming projects. In Proceedings of the 8th SEI

CSEE Conference on Software Engineering Education, pages

295–303, London, UK, 1995. Springer-Verlag.

[12] D. Arosemena-Trejos, S. Crespo, and C. Clunie. Criterios y

consideraciones para la formacion de grupos de trabajo en la

ensenanza de la programacion. In Edutec 2010: Proceedings

of the Edutec 2010, 2010. ttp://2edutec2010.wordpress.com/.

[13] A. J. Ko and B. A. Myers. Development and evaluation of a

model of programming errors. In the IEEE 2003 Symposia

on Human Centric Computing Languages and Environments

(HCC’03). IEEE Computer Society, 2003.

[14] E. lahtinen, K. Ala-Mutka, and H.-M. Jarvinen. A study of

the dificulties of novice programmers. In ITiCSE’05, pages

14–18. ACM, 2005.

[15] J. Novak, A. Krajnc, and R. Zontar. Taxonomy of static

code analysis tools. In MIPRO 2010, pages 418–422. the

IEEE Computer Society, 2010.

[16] S. A. Mengel and V. Yerramilli. A case study of the static

analysis of the quality of novice student programs. In

Proceedings of SIGCSE 99, pages 78–82, New Orleans, LA,

USA, 1999. ACM.

[17] A. Taherkhani, L. Malmi, and A. Korhonen. Algorithm

recognition by static analysis and its application in students

submissions assessment. In Koli Calling ’08, pages 88–92.

ACM, 2008.

[18] D. Kopec, G. Yarmish, and P. Cheung. A description and

study of intermediate student programmer errors. In The

SIGCSE Bulletin, pages 146–157. ACM, 2007.

[19] G. Yarmish and D. Kopec. Revisiting novice programmer

errors. In The SIGCSE Bulletin, pages 131–137. ACM, 2007.

[20] M. M. Lucero. Entre el trabajo colaborativo y el aprendizaje

colaborativo. Revista Iberoamericana de Educacion, 2004.

[21] J. Chong, R. Plummer, L. Leifer, S. R. Klemmer, O. Eris,

and G. Toye. Pair programming: When and why it works,

May 2010. http://www.ppig.org/papers/17th-chong.pdf.

[22] P. Haahr. A programming style for java, Abr 2010.

http://192.220.96.201/-essays/java-style/single-page.html.

[23] P. Wheaton. Java programming style guide, May 2010.

http://www.javaranch.com/styleLong.jsp.

[24] D. L. McGuinness and F. van Harmelen. Owl web ontology

language - overview, Mar 2010. http://www.w3.org/TR/owl-

features/.

[25] Javacc. Java compiler compiler - the java parser generator.

http://javacc.java.net/.

[26] Jena. Jena - a semantic web framework for java.

http://www.openjena.org/.

[27] T. J. Scott, L. H. Tichenor, J. Ralph B. Bisland, and J. H. C.

II. Team dynamics in student programming projects. In

SIGSCE 94-3/94. Springer-Verlag, 1994.

Davis Arosemena-Trejos is a researcher at the Technological
University of Panama. He has a Master’s degree (MSc) in
Information and Communication Technology from the
Technological University of Panama. His research interests
include Software Engineering, Semantic Web, programming’s
teaching-learning process and other.

Sérgio Crespo is a professor at the Universidade do Vale do Rio
Dos Sinos – Brasil, PhD awarded by Pontifìcia Universidade
Católica do Rio de Janeiro.

Clifton Clunie is a professor at the Technological University of
Panama, PhD awarded by the Universidade Federal do Rio de
Janeiro.

http://www.ppig.org/papers/17th-chong.pdf
http://192.220.96.201/-essays/java-style/single-page.html
http://www.javaranch.com/styleLong.jsp
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/
http://javacc.java.net/
http://www.openjena.org/

