
E. Corchado, A. Abraham, and W. Pedrycz (Eds.): HAIS 2008, LNAI 5271, pp. 46–53, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Classification Agent-Based Techniques for Detecting
Intrusions in Databases

Cristian Pinzón1, Yanira De Paz2, and Rosa Cano3

1 Universidad Tecnológica de Panamá, Av. Manuel Espinosa Batista, Panama
2 Universidad Europea de Madrid, Tajo s/n 28670, Villaviciosa de Odón, Spain

3 Instituto Tecnológico de Colima, Av. Tecnológico s/n, 28976, Mexico
cristian.pinzon@utp.ac.pa, yanirarosario.depaz@uem.es,

rdegca@gmail.com

Abstract. This paper presents an agent specially designed for the prevention
and detection of SQL injection at the database layer of an application. The
agent incorporates a Case-based reasoning mechanism whose main characteris-
tic involves a mixture of neural networks that carry out the task of filtering at-
tacks. The agent had been tested and the results obtained are presented in this
study.

Keywords: SQL injection, multiagent systems, case-based reasoning, neural
networks.

1 Introduction

Database security is a fundamental aspect of all current information systems. There
are many ways of exploiting the security vulnerability in a relational database. SQL
injection is one of more common types of attacks at the database layer of desktop and
Web applications. SQL injection occurs when the intended effect of the SQL sentence
is changed by inserting SQL keywords or special symbols [1]. The problem of SQL
injection attacks has been traditionally addressed by using centralized architectures
[2], [3]. Because this type of solution is incomplete, several types of intrusion detec-
tion system (IDS) solutions have been proposed [4]. Although IDSs are effective,
there are a number of drawbacks such as a large number of false positives and nega-
tives, limited learning capacity, and limited ability in adapting to changes in attack
patterns.

This article presents a CBR-BDI [5] deliberative agent based on the BDI (Belief,
Desire, Intention) [6] model specifically designed for the detection and prevention of
SQL injection attacks in database layers. Our study applies a novel case-based reason-
ing (CBR) [7] [8] classification mechanism that incorporates a mixture of neural net-
works capable of making short term predictions [9].

This proposal is an innovative approach that addresses the problem of SQL injec-
tion attacks by means of a distributed artificial intelligence technique. Specifically, it
combines the characteristics of multiagent systems such as autonomy, pro-activity,
social relations, etc., [5] with CBR [7]. CBR Systems are adequate in dealing with

 Classification Agent-Based Techniques for Detecting Intrusions in Databases 47

SQL injection attacks, insomuch as these systems find solutions to new problems by
using previous experiences. This fact allows us to equip our classifier agents with a
great capacity for adapting and learning, thus making them very adept in resolving
problems in dynamic environments. The system developed within the scope of this
work proposes a solution which combines a distributed approach and an advanced
classification system, incorporating the best of both approaches.

The rest of the paper is structured as follows: section 2 presents the problem that
has prompted most of this research work. Section 3 focuses on the structure of the
classifier agent which facilitates the detection and prevention of malicious injection
attacks, and section 4 explains in detail the classification model integrated within the
classifier agent. Finally, section 5 describes how the classifier agent has been tested
inside a multi-agent system and presents the results obtained.

2 SQL Injection Problem Description

A SQL injection attack affects the security of personal, social, financial and legal
information for both individuals and organizations. A SQL injection attack takes
place when a hacker changes the semantic or syntactic logic of a SQL text string by
inserting SQL keywords or special symbols within the original SQL command that
will be executed at the database layer of an application [1]. SQL injection attacks
occur when user input variables are not strongly typed, thus making them vulnerable
to attack. As a result, these attacks can produce unauthorized handling of data, re-
trieval of confidential information, and in the worst possible case, taking over control
of the application server [2]. One of the biggest problems with SQL injection is the
various forms of vulnerabilities that exist. Some of the better known strategies, such
as tautologies, syntax errors or illegal queries, and union operators, are easy to detect.
However other strategies can be extremely complex due to the high number of
variables that they can generate, thus making their detection very difficult. Some
examples of these strategies are inference mechanisms, data storage procedures, and
alternative encoding.

Traditional security mechanisms such as firewalls or IDSs are not very efficient in
detecting and preventing these types of attacks. Other approaches based on string
analysis, along with dynamic and static analyses such as AMNESIA (Analysis and
Monitoring for Neutralizing SQL Injection Attacks) [2], have the disadvantage of
addressing just one part of the problem, and therefore deliver only a partial solution.
Moreover, the approaches based on models for detecting SQL injection attacks are
very sensitive. With only slight variations of accuracy, they generate a large number
of false positive and negatives.

Some innovative proposals are incorporating artificial intelligence and hybrids sys-
tems. Web Application Vulnerability and Error Scanner (WAVES) [10] uses a black-
box technique which includes a machine learning approach. Valeur [4] presents an
IDS approach which uses a machine learning technique based on a dataset of legal
transactions. These are used during the training phase prior to monitoring and classi-
fying malicious accesses. Rietta [11] proposed an IDS at the application layer using
an anomaly detection model which assumes certain behaviour of the traffic generated
by the SQL queries; that is, elements within the query (sub-queries, literals, keyword

